Pregnancy and delivery in women with von Willebrand disease.

Given the wide heterogeneity of phenotypes and of the underlying pathophysiological mechanisms associated with the disorder, pregnancy and delivery in von Willebrand disease (VWD) represent a significant clinical challenge. The variable pattern of changes observed during pregnancy of von Willebrand factor (VWF) and factor VIII (FVIII), the protein carried by VWF, prompts a careful evaluation of pregnant women with VWD to plan the most appropriate treatment at the time of parturition. However, there are also instances during pregnancy (amniocentesis, vaginal bleeding associated with placental detachment, sudden abortion) that may require urgent hemostatic treatment to prevent bleeding. Thus, women with VWD should start pregnancy after being well characterised as to their type, subtype and treatments. Women with VWD who have VWF and FVIII basal levels >30 U/dL typically normalise these levels at the end of pregnancy and specific anti-haemorrhagic prophylaxis is seldom required. On the contrary, those with basal levels <20 U/dL usually show a lesser increase and specific treatment is required. Some women with DNA variants associated with increased clearance can be treated with desmopressin, while those unresponsive or with contra-indications to this agent need replacement therapy. For these latter women, the risk of vaginal bleeding during pregnancy may be increased and prophylaxis with VWF concentrates required. Similarly, women with type 2 VWD who maintain reduced VWF activity throughout pregnancy require replacement therapy with FVIII/VWF concentrates. Delayed postpartum bleeding may occur when replacement therapy is not continued for some days. Tranexamic acid is useful at discharge to avoid excessive lochia.

Inherited Bleeding Disorders in the Obstetric Patient

Inherited bleeding disorders increase the risk of bleeding in the obstetric patient. Randomized controlled trials to compare prophylactic or therapeutic interventions are rare, and guidance documents rely heavily on expert opinion. Here we report the results of a systematic review of the literature for the treatment and prevention of peripartum bleeding in women with an inherited bleeding disorder. The highest-quality evidence is for the use of tranexamic acid in postpartum hemorrhage, which has been shown to decrease bleeding-related mortality in women without bleeding disorders. There is limited evidence for prophylactic use of this agent in women with inherited bleeding disorders. Desmopressin has also been used in observational studies of patients with von Willebrand disease and carriers of hemophilia A with some success, although concerns about the risk of hyponatremia persist. In patients with deficiencies of specific factors, replacement is generally the preferred approach, and concentrates have been studied in deficiencies of VWF and factors VII, VIII, IX, XI, and XIII as well as in patients with fibrinogen deficiency. Because of the small size of these studies, neither safety nor efficacy is well established, although the literature suggests that bleeding history may be more predictive of outcomes than factor levels in many cases. Goal factor levels have not been studied or systematically established in any of these diseases, although observational data suggest that achieving normal levels may be inadequate, particularly for VWF and factor VIII, which are physiologically elevated in pregnancy. For factor deficiencies in which no specific concentrate is available, such as factors II (prothrombin) and V, prothrombin complex concentrate or fresh frozen plasma may be used, and for platelet defects or deficiencies, such as Glanzmann thrombasthenia or Bernard-Soulier syndrome, platelet transfusion is generally first line, although use of recombinant FVIIa has been reported in patients with Glanzmann thrombasthenia to avoid development of, or treat patients with, antibodies to platelet glycoprotein IIbIIIa. Ultimately, data are lacking to definitively support an evidence-based approach to management in any of these disorders, and prospective, controlled studies are desperately needed.

Females with FVIII and FIX deficiency have reduced joint range of motion. American Journal of Hematology 2014 89(8):831-836.

Click Here to be forwarded to this article.

Sidonio RF, Mili FD, Li T, Miller CH, Hooper WC, DeBaun MR, Soucie MJ, and the Hemophilia Treatment Centers Network. Females with FVIII and FIX deficiency have reduced joint range of motion. American Journal of Hematology. 2014. 89(8):831-836.